Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
PLoS One ; 19(4): e0300878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635835

RESUMEN

Saltwater intrusion in the coastal areas of Bangladesh is a prevalent phenomenon. However, it is not conducive to activities such as irrigation, navigation, fish spawning and shelter, and industrial usage. The present study analyzed 45 water samples collected from 15 locations in coastal areas during three seasons: monsoon, pre-monsoon, and post-monsoon. The aim was to comprehend the seasonal variation in physicochemical parameters, including water temperature, pH, electrical conductivity (EC), salinity, total dissolved solids (TDS), hardness, and concentrations of Na+, K+, Mg2+, Ca2+, Fe2+, HCO3-, PO43-, SO42-, and Cl-. Additionally, parameters essential for agriculture, such as soluble sodium percentage (SSP), sodium absorption ratio (SAR), magnesium absorption ratio (MAR), residual sodium carbonate (RSC), Kelly's ratio (KR), and permeability index (PI), were examined. Their respective values were found to be 63%, 16.83 mg/L, 34.92 mg/L, 145.44 mg/L, 1.28 mg/L, and 89.29%. The integrated water quality index was determined using entropy theory and principal component analysis (PCA). The resulting entropy water quality index (EWQI) and SAR of 49.56% and 63%, respectively, indicated that the samples are suitable for drinking but unsuitable for irrigation. These findings can assist policymakers in implementing the Bangladesh Deltaplan-2100, focusing on sustainable land management, fish cultivation, agricultural production, environmental preservation, water resource management, and environmental protection in the deltaic areas of Bangladesh. This research contributes to a deeper understanding of seasonal variations in the hydrochemistry and water quality of coastal rivers, aiding in the comprehension of salinity intrusion origins, mechanisms, and causes.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Calidad del Agua , Monitoreo del Ambiente/métodos , Ríos , Bangladesh , Sodio/análisis , Contaminantes Químicos del Agua/análisis , Agua Subterránea/análisis , Agua Potable/análisis , India
2.
Artículo en Inglés | MEDLINE | ID: mdl-38625466

RESUMEN

Despite sporadic and irregular studies on heavy metal(loid)s health risks in water, fish, and soil in the coastal areas of the Bay of Bengal, no chemometric approaches have been applied to assess the human health risks comprehensively. This review aims to employ chemometric analysis to evaluate the long-term spatiotemporal health risks of metal(loid)s e.g., Fe, Mn, Zn, Cd, As, Cr, Pb, Cu, and Ni in coastal water, fish, and soils from 2003 to 2023. Across coastal parts, studies on metal(loid)s were distributed with 40% in the southeast, 28% in the south-central, and 32% in the southwest regions. The southeastern area exhibited the highest contamination levels, primarily due to elevated Zn content (156.8 to 147.2 mg/L for Mn in water, 15.3 to 13.2 mg/kg for Cu in fish, and 50.6 to 46.4 mg/kg for Ni in soil), except for a few sites in the south-central region. Health risks associated with the ingestion of Fe, As, and Cd (water), Ni, Cr, and Pb (fish), and Cd, Cr, and Pb (soil) were identified, with non-carcinogenic risks existing exclusively through this route. Moreover, As, Cr, and Ni pose cancer risks for adults and children via ingestion in the southeastern region. Overall non-carcinogenic risks emphasized a significantly higher risk for children compared to adults, with six, two-, and six-times higher health risks through ingestion of water, fish, and soils along the southeastern coast. The study offers innovative sustainable management strategies and remediation policies aimed at reducing metal(loid)s contamination in various environmental media along coastal Bangladesh.

3.
J Ethnopharmacol ; 324: 117769, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38219886

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Achyranthes ferruginea (A. ferruginea) Roxb. is a common plant used in traditional medicine in Asia and Africa. It has a variety of local names, including "Gulmanci" in Nigeria, "Dangar" in Pakistan, "Thola" in Ethiopia, and "Roktoshirinchi" in Bangladesh. It is edible and has several ethnomedical uses for a wide range of illnesses, including hysteria, dropsy, constipation, piles, boils, asthma, and shigellosis. However, the neuropharmacological and analgesic potential of A. ferruginea remains uninvestigated. AIM OF THE STUDY: To assess the neuropharmacological and analgesic potential of A. ferruginea through a multifaceted approach encompassing both experimental and computational models. MATERIALS AND METHODS: Methanol was used to extract the leaves of A. ferruginea. It was then fractionated with low to high polar solvents (n-hexane, chloroform, ethyl acetate, and water) to get different fractions, including chloroform fraction (CLF). The study selected CLF at different doses and conducted advanced chemical element and proximate analyses, as well as phytochemical profiling using GC-MS. Toxicological studies were done at 300 µg per rat per day for 14 days. Cholinesterase inhibitory potential was checked using an in-vitro colorimetric assay. Acetic acid-induced writhing (AAWT) and formalin-induced licking tests (FILT) were used to assess anti-nociceptive effects. The forced swim test (FST), tail suspension test (TST), elevated plus maze (EPM), hole board test (HBT), and light and dark box test (LDB) were among the behavioral tests used to assess depression and anxiolytic activity. Network pharmacology-based analysis was performed on selected compounds using the search tool for interacting chemicals-5 (STITCH 5), Swiss target prediction tool, and search tool for the retrieval of interacting genes and proteins (STRING) database to link their role with genes involved in neurological disorders through gene ontology and reactome analysis. RESULTS: Qualitative chemical element analysis revealed the presence of 15 elements, including Na, K, Ca, Mg, P, and Zn. The moisture content, ash value, and organic matter were found to be 11.12, 11.03, and 88.97%, respectively. GC-MS data revealed that the CLF possesses 25 phytoconstituents. Toxicological studies suggested the CLF has no effects on normal growth, hematological and biochemical parameters, or cellular organs after 14 days at 300 µg per rat. The CLF markedly reduced the activity of both acetylcholinesterase and butyrylcholinesterase (IC50: 56.22 and 13.22 µg/mL, respectively). Promising dose-dependent analgesic activity (p < 0.05) was observed in chemically-induced pain models. The TST and FST showed a dose-dependent substantial reduction in immobility time due to the CLF. Treatment with CLF notably increased the number of open arm entries and time spent in the EPM test at doses of 200 and 400 mg/kg b.w. The CLF showed significant anxiolytic activity at 200 mg/kg b.w. in the HBT test, whereas a similar activity was observed at 400 mg/kg b.w. in the EPM test. A notable increase in the amount of time spent in the light compartment was observed in the LDB test by mice treated with CLF, suggesting an anxiolytic effect. A network pharmacology study demonstrated the relationship between the phytochemicals and a number of targets, such as PPARA, PPARG, CHRM1, and HTR2, which are connected to the shown bioactivities. CONCLUSIONS: This study demonstrated the safety of A. ferruginea and its efficacy in attenuating cholinesterase inhibitory activity, central and peripheral pain, anxiety, and depression, warranting further exploration of its therapeutic potential.


Asunto(s)
Achyranthes , Ansiolíticos , Ratas , Ratones , Animales , Ansiolíticos/efectos adversos , Extractos Vegetales/uso terapéutico , Extractos Vegetales/toxicidad , Cloroformo , Acetilcolinesterasa , Butirilcolinesterasa , Analgésicos/efectos adversos , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Nigeria , Pakistán
4.
Chemosphere ; 351: 141217, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246495

RESUMEN

Groundwater is an essential resource in the Sundarban regions of India and Bangladesh, but its quality is deteriorating due to anthropogenic impacts. However, the integrated factors affecting groundwater chemistry, source distribution, and health risk are poorly understood along the Indo-Bangla coastal border. The goal of this study is to assess groundwater chemistry, associated driving factors, source contributions, and potential non-carcinogenic health risks (PN-CHR) using unsupervised machine learning models such as a self-organizing map (SOM), positive matrix factorization (PMF), ion ratios, and Monte Carlo simulation. For the Sundarban part of Bangladesh, the SOM clustering approach yielded six clusters, while it yielded five for the Indian Sundarbans. The SOM results showed high correlations among Ca2+, Mg2+, and K+, indicating a common origin. In the Bangladesh Sundarbans, mixed water predominated in all clusters except for cluster 3, whereas in the Indian Sundarbans, Cl--Na+ and mixed water dominated in clusters 1 and 2, and both water types dominated the remaining clusters. Coupling of SOM, PMF, and ionic ratios identified rock weathering as a driving factor for groundwater chemistry. Clusters 1 and 3 were found to be influenced by mineral dissolution and geogenic inputs (overall contribution of 47.7%), while agricultural and industrial effluents dominated clusters 4 and 5 (contribution of 52.7%) in the Bangladesh Sundarbans. Industrial effluents and agricultural activities were associated with clusters 3, 4, and 5 (contributions of 29.5% and 25.4%, respectively) and geogenic sources (contributions of 23 and 22.1% in clusters 1 and 2) in Indian Sundarbans. The probabilistic health risk assessment showed that NO3- poses a higher PN-CHR risk to human health than F- and As, and that potential risk to children is more evident in the Bangladesh Sundarban area than in the Indian Sundarbans. Local authorities must take urgent action to control NO3- emissions in the Indo-Bangla Sundarbans region.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Niño , Humanos , Monitoreo del Ambiente/métodos , Aprendizaje Automático no Supervisado , Agricultura , Agua , Contaminantes Químicos del Agua/análisis , Calidad del Agua
5.
Environ Sci Pollut Res Int ; 31(2): 2187-2197, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38055168

RESUMEN

Soil contamination with heavy metals and metalloids is a global concern nowadays. Phytoremediation is an eco-friendly, cost-effective, and sustainable way of mitigating such contamination by utilizing the plants' ability to accumulate, sequester, and stabilize elements. Biomass-producing plants may outperform hyperaccumulators in terms of total elemental removal and offer more cost-effectiveness through their usable biomass. Ipomoea carnea is a wild plant in the Asian region. It is resilient, spreads rapidly in a wide range of soil conditions, and has a high potential for biomass feedstock. In this work, we have tested this plant species for its growth performance and accumulation characteristics of Cr and As. In a pot experiment, the plants could easily grow from rootless stem segments in 2 weeks when garden soils are treated with 100-500 ppm of Cr and 20-300 ppm of As. Plant growth reduction was little at the moderate level of these elements, with a significant accumulation of elements in 45 days. Within this time, in the stems and leaves, the Cr concentrations were found to be 49 and 39 ppm, respectively, when treated with 500 ppm of Cr, whereas the As concentrations were obtained as 83 and 28 ppm, respectively, for the treatment with 300 ppm of As. To estimate the biomass production potential, the plant was grown with a density of 80,000 per ha under normal field conditions (without metal stress). At the harvest, the plants consisted of 80% stems, 11% leaves, and 9% belowground portions on a dry weight basis. The dry weight of stems, leaves, and belowground parts was 31.3%, 17.9%, and 23.7%, respectively. Overall, the estimated biomass was 25.8 Mg/ha/year from three harvests. The ability to regrow from the basal part makes it useful for continuous sequestration of toxic elements over multiple harvests. Our results show that I. carnea could lower Cr and As from contaminated soils and potentially a phytoremediation candidate considering accumulation rate and high amount of usable biomass production.


Asunto(s)
Arsénico , Ipomoea , Metales Pesados , Contaminantes del Suelo , Cromo/análisis , Biomasa , Bioacumulación , Contaminantes del Suelo/análisis , Plantas , Biodegradación Ambiental , Suelo
6.
J Contam Hydrol ; 260: 104271, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056088

RESUMEN

Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Humanos , Plásticos , Microplásticos , Bahías , Estuarios , Biodiversidad , Polímeros , Agua , Monitoreo del Ambiente , Sedimentos Geológicos
7.
Environ Sci Pollut Res Int ; 31(2): 2343-2359, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057678

RESUMEN

Toxic metals and freshwater fish's metalloid contamination are significant environmental concerns for overall public health. However, the bioaccumulation and sources of metal(loids) in freshwater fishes from Bangladesh still remain unknown. Thus, the As, Pb, Cd, and Cr concentrations in various freshwater fish species from the Rupsha River basin were measured, including Tenualosa ilisha, Gudusia chapra, Otolithoides pama, Setipinna phasa, Mystus vittatus, Glossogobius giuris, and Pseudeutropius atherinoides. An atomic absorption spectrophotometer was used to determine metal concentrations. The mean concentrations of metal(loids) in the fish muscle (mg/kg) were found to be As (1.53) > Pb (1.25) > Cr (0.51) > Cd (0.39) in summer and As (1.72) > Pb (1.51) > Cr (0.65) > Cd (0.49) in winter. The analyzed fish species had considerably different metal(loid) concentrations with seasonal variation, and the distribution of the metals (loids) was consistent with the normal distribution. The demersal species, M. vittatus, displayed the highest bio-accumulative value over the summer. However, in both seasons, none of the species were bio-accumulative. According to multivariate statistical findings, the research area's potential sources of metal(loid) were anthropogenic activities linked to geogenic processes. Estimated daily intake, target hazard quotient (THQ), and carcinogenic risk (CR) were used to assess the influence of the risk on human health. The consumers' THQs values were < 1, indicating that there were no non-carcinogenic concerns for local consumers. Both categories of customers had CRs that fell below the permissible range of 1E - 6 to 1E - 4, meaning they were not at any increased risk of developing cancer. The children's group was more vulnerable to both carcinogenic and non-carcinogenic hazards. Therefore, the entry of metal(loids) must be regulated, and appropriate laws must be used by policymakers.


Asunto(s)
Bagres , Metales Pesados , Contaminantes Químicos del Agua , Animales , Niño , Humanos , Metales Pesados/análisis , Ríos , Cadmio , Bioacumulación , Salud Pública , Bangladesh , Plomo , Peces , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Medición de Riesgo
8.
J Hazard Mater ; 465: 133214, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101007

RESUMEN

Eleven trace metals (Cd, Cr, Fe, Mn, Cu, Ni, Co, Zn, As, Pb, and Ag) in sediments of Bangladesh's ship breaking area were measured by an atomic absorption spectrometer to determine origin, contamination extent, spatial distributions, and associated ecological and human health hazards. This study found considerable quantities of Pb, Cd, Mn, Zn, and Cu when compared with standards and high levels of Pb, Cd, Zn, Cu, As, and Ag contamination according to pollution evaluation indices. Different indices indicate most of the sampling sites were highly polluted. However, spatial distribution maps indicate that trace metals were predominantly deposited in the northern and southern region. The ecological risk index revealed that Cd has the highest while Pb and As had moderate risk. Based on the health index values, Zn for both adults and children were higher than the safe limit while Mn, Pb, Cr, As, Fe, Cu, Ni, and Co for children were close to the threshold. The mean total carcinogenic risk values of Cr, As, and Ni for children and Ni for adults exceeded the permissible threshold. The cancer risk possibilities were further assessed using Monte Carlo simulation. Most trace metals have anthropogenic origins, which were attributed to ship breaking activities.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adulto , Niño , Humanos , Metales Pesados/análisis , Monitoreo del Ambiente , Bangladesh , Navíos , Cadmio , Plomo , Sedimentos Geológicos , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , China
9.
BMC Infect Dis ; 23(1): 885, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110894

RESUMEN

BACKGROUND: Post-kala-azar dermal leishmaniasis (PKDL) is a dermatosis that occurs 2-3 years after an apparently successful treatment of visceral leishmaniasis (VL). In rare cases, PKDL occurs concurrently with VL and is characterized by fever, splenomegaly, hepatomegaly or lymphadenopathy, and poor nutritional status and is known as Para-kala-azar dermal leishmaniasis (Para-KDL). Co-association of active VL in PKDL patients is documented in Africa, but very few case reports are found in South Asia. We present a case of Para-kala-azar Dermal Leishmaniasis (Para-KDL) in a 50-year-old male patient with a history of one primary Visceral Leishmaniasis (VL) and 2 times relapse of Visceral Leishmaniasis (VL). The patient presented with fever, skin lesions, and hepatosplenomegaly. Laboratory tests revealed LD bodies in the slit skin smear and splenic biopsy. The patient was treated with two cycles of Amphotericin B with Miltefosine in between cycles for 12 weeks to obtain full recovery. CONCLUSION: This case report serves as a reminder that Para-kala-azar dermal leishmaniasis can develop as a consequence of prior visceral leishmaniasis episodes, even after apparently effective therapy. Since para-kala-azar is a source of infectious spread, endemics cannot be avoided unless it is effectively recognized and treated.


Asunto(s)
Antiprotozoarios , Leishmaniasis Cutánea , Leishmaniasis Visceral , Masculino , Humanos , Persona de Mediana Edad , Leishmaniasis Visceral/complicaciones , Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Cutánea/complicaciones , Leishmaniasis Cutánea/diagnóstico , Leishmaniasis Cutánea/tratamiento farmacológico , Antiprotozoarios/uso terapéutico , Anfotericina B/uso terapéutico , Recurrencia
10.
Environ Pollut ; 338: 122673, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37793543

RESUMEN

Tannery-effluent is one of the top-ranked hazardous waste which is generally discharged into the river. To study the fluvial response toward the tannery-effluents and to trace anthropogenic foot-prints in the fluvial-system, a suite of systematically collected sediment and water samples were analyzed for radioactive (226Ra, 232Th, and 40K) and non-radioactive elements (Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Sb, Hg, and Pb). Neutron activation analysis and atomic absorption spectroscopy were used for elemental analysis, whereas HPGe-gamma-detector was used for measuring the primordial-radionuclides. Ranges of Cr-abundances in sediment and water were 63-4373 µg.g-1 and 15.6-52.2 µg.L-1, respectively which were ∼4-14 times higher than the geological background. Radioactivity concentrations of 226Ra, 232Th, and 40K ranged from 17.7-48.5, 36.1-81.6, and 687-1041 Bq.kg-1, respectively which were significantly depleted in effluent discharge point. Hence, primordial-radionuclides were used as natural tracers for tracing anthropogenic foot-prints which were explained in terms of dilution effect, redox environment and differential geo-environmental events/characteristics. From statistical-approaches and geochemical reasoning, elemental sources and responses in fluvial system were explored. Surprisingly, ecological & radiological risks were reduced while sediment quality guideline-based ecotoxicity & water-mediated health risks were increased by the incorporation of tannery effluents. This study describes the sedimentary response toward the received tannery effluents which is particularly explored by the primordial radionuclides.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Ríos/química , Contaminantes Químicos del Agua/análisis , Agua/análisis , Radioisótopos/análisis , Metales Pesados/análisis , Sedimentos Geológicos/química
11.
Sci Total Environ ; 904: 166927, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37704149

RESUMEN

Water contamination undermines human survival and economic growth. Water resource protection and management require knowledge of water hydrochemistry and drinking water quality characteristics, mechanisms, and factors. Self-organizing maps (SOM) have been developed using quantization and topographic error approaches to cluster hydrochemistry datasets. The Piper diagram, saturation index (SI), and cation exchange method were used to determine the driving mechanism of hydrochemistry in both surface and groundwater, while the Gibbs diagram was used for surface water. In addition, redundancy analysis (RDA) and a generalized linear model (GLM) were used to determine the key drinking water quality parameters in the study area. Additionally, the study aimed to utilize Explainable Artificial Intelligence (XAI) techniques to gain insights into the relative importance and impact of different parameters on the entropy water quality index (EWQI). The SOM results showed that thirty neurons generated the hydrochemical properties of water and were organized into four clusters. The Piper diagram showed that the primary hydrochemical facies were HCO3--Ca2+ (cluster 4), Cl---Na+ (all clusters), and mixed (clusters 1 and 4). Results from SI and cation exchange show that demineralization and ion exchange are the driving mechanisms of water hydrochemistry. About 45 % of the studied samples are classified as "medium quality"," that could be suitable as drinking water with further refinement. Cl- may pose increased non-carcinogenic risk to adults, with children at double risk. Cluster 4 water is low-risk, supporting EWQI findings. The RDA and GLM observations agree in that Ca2+, Mg2+, Na+, Cl- and HCO3- all have a positive and significant effect on EWQI, with the exception of K+. TDS, EC, Na+, and Ca2+ have been identified as influencing factors based on bagging-based XAI analysis at global and local levels. The analysis also addressed the importance of SO4, HCO3, Cl, Mg2+, K+, and pH at specific locations.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Niño , Adulto , Humanos , Calidad del Agua , Monitoreo del Ambiente , Agua Potable/análisis , Inteligencia Artificial , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Cationes/análisis
13.
Environ Pollut ; 337: 122582, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739257

RESUMEN

Evidence suggests that oral exposure to bisphenol A (BPA) may result in adverse metabolic and neurobehavioral effects. The aim of the present meta-analysis is to examine this association based on systematically selected laboratory rodent studies published from 2012 to 2021 and sourced from Scopus, Web of Science, EmBase, and PubMed. Articles satisfying eligibility and inclusion criteria were included for the calculation of the summary standardised mean difference (SMD). Subgroup analysis and subsequent dose-response analysis were conducted if applicable. In total, 32 studies were analysed for 6 metabolic endpoints (cholesterol, triglycerides, insulin, glucose, leptin, and adiponectin) and 6 neurobehavioral endpoints (locomotor activity, exploratory, anxiety, depression, spatial learning and memory, non-spatial learning and memory). Summary SMDs implied that no significant effects were observed in endpoints considered. The dose was not determined as a significant moderator with regards to medium or high heterogeneity; however, there was significant impairment of spatial learning and memory at health-based guidance value ('HBGV') (0.05-9 mg (kg bw)-1 day-1) and 'High' (>9 mg (kg bw)-1 day-1) dose group. As a result, an indicative toxicological reference dose value of 0.034 mg (kg bw)-1 day-1 was proposed due to large variability. Potential harm to spatial learning and memory from BPA exposure requires further investigation. This study has provided some additional information on potential adverse metabolic and neurobehavioral effects of BPA from the perspective of meta-analysis which can inform the public, regulatory authorities, and policymakers.


Asunto(s)
Ansiedad , Fenoles , Fenoles/toxicidad , Fenoles/análisis , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/análisis , Insulina
14.
Environ Sci Pollut Res Int ; 30(45): 100828-100844, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37644270

RESUMEN

Tobacco products are widely recognized as a major contributor to death. Cigarette smoke contains several toxic chemicals including heavy metals particulate causing high health risks. However, limited information has been available on the health risks associated with the heavy metals in cigarettes commonly sold in the Bangladeshi market. This study evaluated the concentrations and potential health risks posed by ten concerned heavy metals in ten widely consumed cigarette brands in Bangladesh using an atomic absorption spectrometer. The concentration (mg/kg) ranges of heavy metals Pb, Cd, Cr, As, Co, Ni, Mn, Fe, Cu, and Zn vary between 0.46-1.05, 0.55-1.03, 0.80-1.2, 0.22-0.40, 0.46-0.78, 2.59-3.03, 436.8-762.7, 115.8-184.4, 146.6-217.7, and 34.0-42.7, respectively. We assume that the heavy metals content among cigarette brands is varied due to the differences in the source of tobacco they use for cigarette preparation. The carcinogenic risks posed by heavy metals follow the order of Cr > Co > Cd > As > Ni > Pb, while the non-carcinogenic risks for Cu, Zn, Fe, and Mn were greater than unity (HQ > 1), except for Fe. The existence of toxic heavy metals in cigarette tobacco may thus introduce noticeable non-carcinogenic and carcinogenic health impacts accompanying inhalation exposure. This study provides the first comprehensive report so far on heavy metal concentration and associated health risks in branded cigarettes commonly sold in Bangladesh. Hence, this data and the information provided can serve as a baseline as well as a reference for future research and have potential implications for policy and legislation in Bangladesh.

16.
Environ Res ; 234: 116509, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399988

RESUMEN

The quality of water used for irrigation is one of the major threats to maintaining the long-term sustainability of agricultural practices. Although some studies have addressed the suitability of irrigation water in different parts of Bangladesh, the irrigation water quality in the drought-prone region has yet to be thoroughly studied using integrated novel approaches. This study aims to assess the suitability of irrigation water in the drought-prone agricultural region of Bangladesh using traditional irrigation metrics such as sodium percentage (NA%), magnesium adsorption ratio (MAR), Kelley's ratio (KR), sodium adsorption ratio (SAR), total hardness (TH), permeability index (PI), and soluble sodium percentage (SSP), along with novel irrigation indices such as irrigation water quality index (IWQI) and fuzzy irrigation water quality index (FIWQI). Thirty-eight water samples were taken from tube wells, river systems, streamlets, and canals in agricultural areas, then analyzed for cations and anions. The multiple linear regression model predicted that SAR (0.66), KR (0.74), and PI (0.84) were the primary important elements influencing electrical conductivity (EC). Based on the IWQI, all water samples fall into the "suitable" category for irrigation. The FIWQI suggests that 75% of the groundwater and 100% of the surface water samples are excellent for irrigation. The semivariogram model indicates that most irrigation metrics have moderate to low spatial dependence, suggesting strong agricultural and rural influence. Redundancy analysis shows that Na+, Ca2+, Cl-, K+, and HCO3- in water increase with decreasing temperature. Surface water and some groundwater in the southwestern and southeastern parts are suitable for irrigation. The northern and central parts are less suitable for agriculture because of elevated K+ and Mg2+ levels. This study determines irrigation metrics for regional water management and pinpoints suitable areas in the drought-prone region, which provides a comprehensive understanding of sustainable water management and actionable steps for stakeholders and decision-makers.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Modelos Lineales , Monitoreo del Ambiente , Sequías , Lógica Difusa , Benchmarking , Calidad del Agua , Agricultura , Agua Subterránea/análisis , Sodio/análisis , Contaminantes Químicos del Agua/análisis , Riego Agrícola
17.
Environ Sci Pollut Res Int ; 30(37): 88132-88154, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37436631

RESUMEN

The coastal areas of Bangladesh have poor accessibility to fresh drinking water and the groundwater is not suitable for drinking, cooking, and other domestic uses due to high levels of salinity and potentially toxic elements. The current study focuses on understanding of the distribution of some physicochemical parameters (temperature, pH, EC, TDS, and salinity) and chemical elements (Fe, Mn, Zn, Ca, Mg, Na, K, Cu, Co, Pb, As, Cr, Cd, and Ni) with health perspective in drinking water from the southwestern coastal area of Bangladesh. The physicochemical properties of the water samples were examined with a multiparameter meter, while the elemental concentrations were analyzed using atomic absorption spectrometer. Water quality index (WQI) and irrigation indices were utilized to determine the drinking water quality and irrigation feasibility, respectively, whereas hazard quotients (HQs) and hazard index (HI) were used to assess the probable pathways and the associated potential risks to human health. The concentrations of some toxic elements in measured samples were relatively higher compared to drinking water guidelines, indicating that ground and surface water are not apt for drinking and/or domestic uses. The multivariate statistical approaches linked the source of the pollutants in the studied water body mostly to the geogenic origin including saline water intrusion. WQI values ranged from 18 to 430, reflecting excellent to unsuitable categories of water quality. The assessment of human health risks due to exposure to contaminated water demonstrated both carcinogenic and non-carcinogenic health risks in the exposed residents of the study area. Therefore, appropriate long-term coastal area management strategies should be adopted in the study region for environmental sustainability. The findings of this research will be supportive in understanding the actual situation of fresh drinking water in the area for policymakers, planners, and environmentalists to take effective necessary measures to ensure safe drinking water in the study area.


Asunto(s)
Agua Potable , Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , Humanos , Calidad del Agua , Monitoreo del Ambiente , Bangladesh , Contaminación del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Metales Pesados/análisis
18.
J Contam Hydrol ; 256: 104190, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37150110

RESUMEN

Being a resourceful ecosystem, mangrove estuaries have always been subjected to trace elements (TEs) contamination, and therefore, the biomonitoring approach holds immense potential for surveilling the aquatic environment. To investigate the potentiality of mangrove macroalgae as biomonitors, estuarine water, intertidal-sediment, and macroalgal samples were collected from the Pasur River estuary of Sundarbans mangrove ecosystem, Bangladesh, and afterward studied through Atomic Absorption Spectrometer to quantify the levels of six concerned TEs (Fe, Mn, Zn, Cu, Pb, and Cd). This study utilized the geo-environmental and ecological indices and sediment characterization approaches (sediment quality guidelines-SQGs) for assessing the contamination scenario of the adjacent environment to macroalgae whereas the performance of studied algal groups was evaluated using Bio-contamination factor, Comprehensive bio-concentration index, and Metal accumulation index. Metal occurrence scheme in the water followed the order of Fe > Zn > Mn > Pb > Cd while Fe > Mn > Zn > Cu > Pb > Cd for both sediment and macroalgae. Both Pb and Cd exceeded the guideline limit in estuarine water and the indices approach manifested low to moderate contamination with enrichment from anthropogenic origin of Mn, Zn, and Cu in sediment. Moreover, the SQGs revealed rare biological effects of Cu on an aquatic community. Within algal samples, Chlorophyta contributed the highest biomass production, followed by Phaeophyta and Rhodophyta. Statistical relationship disclosed the influence of environmental variables on TE's accumulation in Chlorophyta. By contrast, hydrochemical's association showed prevalence over the TEs accumulation process for Phaeophyta and Rhodophyta. Bioaccumulation performance analysis revealed that the ability to accumulate TEs in macroalgal groups varied with seasons. Therefore, biomonitoring with macroalgae for the region of interest might require further temporal considerations.


Asunto(s)
Metales Pesados , Algas Marinas , Oligoelementos , Contaminantes Químicos del Agua , Metales Pesados/análisis , Ecosistema , Monitoreo Biológico , Estuarios , Oligoelementos/análisis , Cadmio/análisis , Plomo/análisis , Sedimentos Geológicos/análisis , Monitoreo del Ambiente , Agua/análisis , Contaminantes Químicos del Agua/análisis
19.
Heliyon ; 9(5): e15747, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206050

RESUMEN

Considering the health risks originating from the exposure of metal(loid)s in tap-water and the concomitant vulnerability of school-going students, 25 composite tap water samples from different schools and colleges of central Bangladesh (Mirpur, Dhaka) were analyzed by atomic absorption spectroscopic technique. Elemental abundances of Na, Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Zn, As, Cd, and Pb in the studied tap water samples varied from 4520 to 62250, 2760-29580, 210-3000, 15780-78130, 1.54-5.32, 7.00-196, 2.00-450, 0.04-1.45, 8.23-24.4, 0.10-813, 0.10-10.5, 0.002-0.212, and 1.55-15.8 µgL-1, respectively. Dissolved metal(loid)s' concentrations were mostly within the national and international threshold values with few exceptions which were also consistent with the entropy-based water quality assessment. Multivariate statistical approaches demonstrated that hydro-geochemical processes like water-rock interactions mostly govern the major elemental (Na, Mg, K, Ca) compositions in tap water. However, anthropogenic processes typically control the trace elemental compositions where supply pipeline scaling was identified as the major source. Cluster analysis on sampling sites separated two groups of schools and colleges depending on their establishment years where tap water from older schools and colleges possesses relatively higher levels of metal(loid)s. Hence, gradual pipeline scaling on a temporal scale augmented the metal(loid)s' concentrations in tap-water. In terms of non-carcinogenic health risks estimation, studied tap-water seems to be safe, whereas elemental abundances of Pb and As can cause carcinogenic risks to school-going people. However, progressive deterioration of water quality by pipeline scaling will be supposed to cause significant health risks in the future, for which preventative measures should be adopted.

20.
Sci Total Environ ; 889: 164224, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211131

RESUMEN

Invisible microplastics (MP) have become a significant problem worldwide in recent years. Although many studies have highlighted the sources, effects, and fate of MPs pollution on various ecosystems in developed countries, there is limited information on MPs in the marine ecosystem along the northeastern coast of the Bay of Bengal (BoB). Coastal ecosystems along the BoB coasts are critical to a biodiverse ecology that supports human survival and resource extraction. However, the multi-environmental hotspots, ecotoxicity effects, transport mechanisms, fates, and intervention measures to control MP pollution initiatives along the BoB coasts have received little attention. Therefore, this review aims to highlight the multi-environmental hotspots, ecotoxicity effects, sources, fates, and intervention measures of MP in the northeastern BoB to understand how MP spreads in the nearshore marine ecosystem. This study critically evaluates the hotspots and ecotoxic effects of pollution from MP on the coastal multi-environment, e.g., soil, sediment, salt, water, and fish, as well as current intervention measures and additional mitigation recommendations. This study identified the northeastern part of the BoB as a hotspot for MP. In addition, the transport mechanisms and fate of MP in different environmental compartments are highlighted, as are research gaps and potential future research areas. Research on the ecotoxic effects of MP on BoB marine ecosystems must be a top priority, given the increasing use of plastics and the presence of significant marine products worldwide. The knowledge gained from this study would inform decision-makers and stakeholders in a way that could reduce the impact of the legacy of micro- and nanoplastics in the area. This study also proposes structural and non-structural measures to mitigate the effects of MPs and promote sustainable management.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Humanos , Plásticos , Ecosistema , Bahías , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...